Bí ẩn dẫy số Fibonacci và sự trùng hợp kinh ngạc trong tự nhiên

Tỷ lệ vàng của ngân hà.
Tỷ lệ vàng của ngân hà.

Fibonacci ( 1170-1240), tên đầy đủ của ông là Leonardo Pisano, được biết đến như một nhà toán học vĩ đại nhất của châu Âu thời trung cổ. Ông được sinh ra và lớn lên ở vùng bắc phi. Từ nhỏ đã theo cha đi khắp các vùng xung quanh bờ biển địa trung hải. Trong những chuyến đi của mình, ông có cơ hội gặp nhiều thương nhân và học kiến thức số học của họ. Ông là một trong những người đầu tiên truyền bá hệ thống số Ả Rập vào châu Âu -hệ thống số của chúng ta hiện đang sử dụng ngày nay dựa trên số mười chữ số với dấu thập phân và một biểu tượng đặc biệt (“số không”): 1 2 3 4 5 6 7 8 9 và 0. 

Hiện nay, vẫn còn một bức tượng tưởng niệm ông nằm ở Leaning Tower, bên cạnh Nhà Thờ Lớn ở Pisa. Ngoài ra, tên ông còn được dùng để đặt cho hai bến cảng: Lungarno Fibonacci ở Pisa và Via Fibonacci ở Florence.

ố Phi ((Φ,φ) ), số Fibonacci, tỷ lệ vàng là những khái niệm rất nổi tiếng và quen thuộc, đã được các nhà toán học nghiên cứu xuyên suốt lịch sử, từ thời điểm đầu tiên khi nó xuất hiện. Đó là một dãy vô hạn các số tự nhiên bắt đầu bằng hai phần tử 0 và 1 hoặc 1 và 1, các phần tử sau đó được thiết lập theo quy tắc mỗi phần tử luôn bằng tổng hai phần tử trước nó.

Thậm chí, trái với định kiến toán học là khô khan, khái niệm số Fibonacci xuất hiện trong vô vàn lĩnh vực khác như nghệ thuật, sinh học, kiến trúc, âm nhạc, thực vật học và thậm chí, cả tài chính. Rất có thể, bạn đã tiếp xúc với số Fibonacci đâu đó trong sự nghiệp học tập và nghiên cứu rồi. Liệu bản chất của nó có đi kèm với ý nghĩa rằng: Ta có thể tìm ra được một bản dịch thuật được viết bằng số của mọi thứ ta nhìn thấy, ta nghe được – vạn vật xung quanh ta không?

Có lẽ câu trả lời gần với câu hỏi này nhất là câu nói của triết gia vĩ đại Plato, “Chúa trời vận dụng hình học không ngừng nghỉ – God geometrizes continiually”. Rất xin lỗi nếu như khả năng hạn hẹp của tôi không thể dịch ra được một câu hay hơn.

Dãy số Fibonacci

Dãy Fibonacci là dãy vô hạn các số tự nhiên bắt đầu bằng hai phần tử 0 và 1, các phần tử sau đó được thiết lập theo quy tắc mỗi phần tử luôn bằng tổng hai phần tử trước nó

Dãy số Fibonacci – Quy luật tự nhiên

Trong vô vàn các dãy số, không phải ngẫu nhiên mà dãy số này lại nổi tiếng đến vậy. Nói đến đây có lẽ nhiều người còn ngờ vực. Có lẽ, sau khi cùng lướt qua những điều dưới đây, mọi thắc mắc sẽ được giải đáp.

Sự sắp xếp các cánh hoa trên một bông hoa

Bạn đã bao giờ thực sự dành thời gian ngồi đếm số cánh của các loài hoa? Có lẽ là chưa. Nhưng nếu có thời gian, bạn sẽ nhận thấy một điều khá thú vị rằng: “ số lượng cánh hoa trên một bông hoa luôn là một trong các số thuộc dãy số Fibonacci”.

Hoa một cánh
Hoa hai cánh
Hoa ba cánh
Hoa năm cánh
Hoa tám cánh
Hoa mười ba cánh

Số lượng các đường xoắn ốc (hoặc đường chéo)

Không chỉ ở số cánh hoa, dãy số Fibonacci còn hiện hữu một cách đáng ngạc nhiên hơn bạn nghĩ. Khi bạn quan sát nhị của bông hoa Hướng Dương, nhìn từ tâm ra, theo hai hướng cùng chiều và ngược chiều kim đồng hồ, bạn sẽ thấy các đường xoắn ốc. Và có một điều lạ là, số đường xoắn ốc đó luôn là một số thuộc dãy Fibonacci theo từng cặp: 21 và 34, hoặc 34, 55, hoặc 55, 89, hoặc 89 và 144.

Tương tự, khi bạn quan sát một hạt thông (nón thông): số đường xoắn ốc theo các hướng khác nhau luôn là các cặp số thuộc dãy số bí ẩn: 8 và 13; 5 và 8…..

Và cũng như vậy đối với quả dứa: số đường chéo tạo bởi các mắt dứa theo các hướng chéo nhau cũng lần lượt là 8 và 13 hoặc 13 và 21….tùy kích thước.

Tỷ lệ vàng-Đường xoắn ốc Fibonacci

Số Phi được gọi là Phi là bởi nó được đặt theo tên nhà điêu khắc nổi tiếng người Hy Lạp Phidias (sống tại thế kỷ thứ 5 Trước Công nguyên). Ông là người kiến tạo nên những công trình kiến trúc nổi tiếng, trong đó có đền Parthenon tại Athens. Teho như tác giả Mario Livio viết trong cuốn sách Tỷ lệ Vàng: Câu chuyện về Phi, Con số Kì diệu nhất Thế giới, rất nhiều nhà sử học tin rằng Phidias đã áp dụng thành công tỷ lệ vàng vào trong những tác phẩm của mình.

Chúng ta sử dụng đại số học để tìm ra giá trị số của Phi (Φ), chúng ta sử dụng công thức đơn giản là Φ=a/b. Ta áp dụng công thức này lên biểu diễn hình học của hình ảnh trên, khi lấy tổng chiều dài đoạn thẳng (a+b) chia cho đoạn dài hơn (a), ta cũng ra được cùng kết qua khi lấy đoạn dài hơn (a) chia cho đoạn ngắn hơn (b). Tổng kết lại, ta có Phi (Φ) = (a+b)/a = a/b.

Áp dụng vào dãy số Fibonacci cho ta kết quả Kết quả của đẳng thức này là 1,6180339887…, cùng giá trị với tỷ lệ vàng được định nghĩa bởi nhà toán học Euclid, dưới lời mô tả của Mario Livio là “một con số vô tận và không lặp (Đáng tò mò thay, con số này lại rất giống với kết quả khi chia bất kì con số liên tiếp nào trong dãy Fibonacci cho nhau (ví dụ 5/3=1,666; 13/8=1,625). Kết hợp hai yếu tố này lại, ta đã thành công trong việc sử dụng hình học để biểu thị một phạm trù số học.)Các đặc tính của số Phi làm chúng ta vô cùng ngạc nhiên, và việc phát hiện ra nó dưới dạng tỷ lệ vàng đã cho ta một lối đi để phân tích những hình thái, những vật thể, những biểu thị hình học và thậm chí là những chuyển động trong tự nhiên vẫn diễn ra trong thế giới này. Nó lại đưa ra tới một câu nói đã được nêu ra đâu đó trong bài viết này: tỷ lệ vàng hay là sự cân xứng thần thánh.

Trong những hình ảnh trên, ta thấy đường xoắn ốc Fibonacci, hình chữ nhật với tỷ lệ vàng nhưng ngoài ra, nó cũng có thể dùng để xác định tam giác tỷ lệ vàng hay hình ngũ giác. Nhưng chúng đều có một điểm chung: chúng đều có “yếu tố vàng” ở trong mình.

Mấy con số tỷ lệ vàng này là ta tự tạo ra, liệu môi trường xung quanh ta có “vàng” thế hay “thần thánh” thế không? Những công trình kiến trúc có tỷ lệ vàng là do con người tự làm nên, Mẹ Thiên nhiên có áp dụng công thức ấy trong việc kiến tạo không?

Câu trả lời là có. Ta có thể thấy tỷ lệ vàng trong Kim tự tháp Giza tại Ai Cập, trong logo của Google, hay trong những cánh hoa hồng và thậm chí, trong hình dáng của các ngân hà. Trong tác phẩm La Gioconda – tên gọi khác của bức Mona Lisa vẽ nên bởi Leonardo da Vinci, trong cấu trúc hiển vi của một số tinh thể, và thậm chí (lần 2), có cả trong bản nhạc Dialogue du vent et la mer của nhà soạn nhạc Claude Debussy – dãy số Fibonacci xuất hiện 50 bar nhạc, có thể được chia ra thành những đoạn dài 21, 8, 8, 5, và 13 bar.

Tỷ lệ vàng của bức La Gioconda.
Tỷ lệ vàng của bức La Gioconda.
Tỷ lệ vàng của ngân hà.
Tỷ lệ vàng của ngân hà.

Fibonacci trong forex – công cụ Fibonacci Retracement 

Đến đây, các bạn có lẽ đã hiểu được tầm quan trọng của dãy số Fibonacci trong tự nhiên. Tuy nhiên, là nhà giao dịch trên thị trường forex, chúng ta cần biết đến cách áp dụng Fibonacci Retracement và tính hiệu quả thực sự của công cụ này.

Trong dãy số Fibonacci, nếu bạn lấy một số bất kì đem chia đi cho số liền kề trước nó. Kết quả ta luôn nhận được gần như là 1.618. Hãy cùng làm một phép tính thử xem:

  • Với 21/13, ta được 1.6153
  • Với 34/21, ta được 1.619
  • Với 55/34, ta được 1.6176

Con số 1.618 chính là tỉ lệ vàng, được sử dụng hầu hết trong mọi ngành nghệ thuật, kiến trúc. Con số này xuất hiện trong mọi tạo vật mà bạn có thể tìm thấy trong thế giới tự nhiên.

Với việc mở rộng các cách chia các phần tử trong dãy Fibonacci, chúng ta sẽ có các con số thú vị khác như:

Tỉ lệ 0.618 được tính bằng cách lấy số bất kì chia cho số lớn hơn liền kề trong dãy Fibonacci.

  • Với 13/21, ta được 0.619
  • Với 21/34, ta được 0.6176
  • Với 34/55, ta được 0.6181

Tỉ lệ 0.382 được tính bằng cách lấy số bất kì chia cho số lớn hơn cách 2 vị trí trên dãy Fibonacci.

  • Với 13/34, ta được 0.382
  • Với 21/55, ta được 0.3818
  • Với 34/89, ta được 0.382

Và nếu lấy số bất kì chia cho số lớn hơn cách 3 vị trí trên dãy Fibonacci ta sẽ có tỉ lệ 0.236.

Cuối cùng, từ các tỉ lệ trên đây người ta hợp thành công cụ Fibonacci Retracement bao gồm các số: 23.6% – 38.2% – 61.8%

SÀN GIAO DỊCH UY TÍN

Hình ảnh